lunes, 10 de diciembre de 2018

¿Qué son las congruencias en Z + Módulo M ?

Definición de congruencia

Dado m ∈ Z , m> 1, se dice que ab ∈ Z son congruentes módulo msi y sólo si m|(a-b). Se denota esta relación como a ≡ b (mod m). mes el módulo de la congruencia.


Es importante darse cuenta de que si m divide a a-b, esto supone que ambos a y b tienen el mismo resto al ser divididos por el módulom.
Ejemplos: 23≡2 mod 7 (porque 23=3.7 + 2), y -6≡1 mod 7 (porque -6= -7.1 +1)


La relación de congruencia como equivalencia. El conjunto de residuos.



La relación de congruencia módulo m es una relación de equivalencia para todo m ∈ Z. Es decir, cumple las propiedades reflexiva, simétrica y transitiva. Como en toda relación de equivalencia, podemos definir el conjunto cociente de las clases de equivalencia originadas por la relación de congruencia. En este caso la relación clasifica a cualquier entero a según el resto obtenido al dividirlo por el módulo m.
Llamaremos Zm al conjunto cociente de Z respecto de la relación de congruencia módulo m. A la clase de equivalencia de un elemento a ∈Z se la denota por [a]m o simplemente [a].
Para todo aZ se tiene que [a] = [r] en Zm, donde r es el resto de dividir a entre m.Por lo tanto, el conjunto Zm es finito y tiene melementos: Zm = { [0]m, [1]m, ... , [m-1]m}, donde la clase [i]mrepresenta al conjunto de todos los enteros que son congruentes coni mod m. A este conjunto cociente se le conoce como el conjunto de restos o residuos (módulo m)
Ejemplo: siguiendo con el ejemplo anterior, está claro que en Z7, el número entero 9, el 16 y el 23 pertenecen todos a la clase [2], y que el entero -6, el 1 y el 8 pertenecen a la clase [1]


Compatibilidad de la relación de congruencia con la suma y el producto


Sean m ∈ N y a, b, c, d ∈ Z tales que a ≡ b (mod m) y c ≡ d (modm). Entonces se cumple que:
  1. a + c ≡ b + d (mod m)
  2. a . c ≡ b . d (mod m)


Consecuentemente, el resto de la suma es congruente con la suma de restos, y el resto del producto es congruente con el producto de restos. Además podremos sumar y multiplicar clases de equivalencia (residuos) porque es indiferente el representante que se elija de cada clase a la hora de operar: el resultante de la operación siempre será un representante de la misma clase resultado.
Vamos ahora a definir la aritmética módulo m o aritmética en Zm:

ERRORES DEL GUIÓN

Cuando  Lorena habla de los criterios de divisibilidad dice que 
Un número es divisible por 19 cuando separando la primera cifra de la derecha, multiplicándola por 17, restando este producto de lo que queda a la izquierda y así sucesivamente, da cero o múltiplo de19.
*hay que multiplicar la primera cifra por 2 no por 17, y sumando este producto de lo que queda a la izquierda y así sucesivamente, da 19 

-y cuando dice 
Un número es divisible por 11 cuando la diferencia entre la suma de los valores absolutos de sus cifras de lugar impar y la suma de los valores absolutos de sus cifras de lugar par, de derecha a izquierda, es cero o múltiplo de 11.
*corrección con un ejemplo: 
528: se suman el 5 y el 8 y se resta con el 2 que es el del medio y nos da 11
- En el minuto 6:41 Lorena dice que los divisores encontrados hasta ahora son 1, 2, 4, 28 y 56, sin embargo, no menciona el 112, que tambié lo es como ha demostrado Femili anteriormente.